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We construct a particle transport problem for which there exists no preconditioner
with a cell-centered diffusion coupling stencil that is unconditionally stable and ro-
bust. In particular we consider an asymptotic limit of the periodic horizontal interface
(PHI) configuration wherein the cell height in both layers approaches zero like �2

while the total cross section vanishes like � in one layer and diverges like �−1 as
� → 0 in the other layer. In such cases we show that the conditions for stability and
robustness of the flat eigenmodes of the iteration residual imply instability of the
modes flat in the y-dimension and rapidly varying in the x-dimension. Two assump-
tions are made in the proof. (i) Only cell-centered adjacent-cell preconditioners (AP)
are considered; nevertheless numerical experiments with face-centered precondi-
tioners of the diffusion synthetic acceleration (DSA) type on problem configurations
with sharp material discontinuities suffer similar deterioration in spectral properties.
(ii) The spatial weights of the arbitrarily high-order transport method of the nodal type
and zeroth order (AHOT-N0) are used in the analysis; nevertheless similar results
are expected for alternative spatial approximation methods as long as their spatial
weights continuously approach the correct asymptotic limits: 0 and 1 for thin and
thick cells, respectively. The result of the proof is verified by solving a finite approx-
imation of PHI with three existing codes, two of which are not constrained by these
assumptions. The spectral radii reported by the three codes behave as predicted by
our analysis, i.e., reaching values that far exceed the maximum spectral radii deter-
mined via homogeneous model configuration analysis. This constitutes preliminary
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evidence that our conclusions might extend to a wider class of transport methods and
acceleration schemes than is considered in the analysis. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The need for accelerating source iterations used in particle transport calculations has
long been recognized [1–3]. Significant effort has been invested in identifying the problems
most in need of acceleration and in developing stable and robust acceleration schemes for
them [4]. Among the most popular techniques has been the diffusion synthetic acceleration
(DSA) method, which for model problems, i.e., uniform mesh and homogeneous material
composition, is unconditionally stable and robust [2, 3]. (In this paper we employ the
standard meaning of the term stable, namely iterative convergence for arbitrary initial
guess; the term robust implies convergence in a number of iterations that does not increase
with problem size. Hence stability requires the spectral radius to be smaller than 1, while
robustness requires it to be significantly smaller than 1, independent of problem size.)
More recently the adjacent-cell preconditioner scheme was devised to address some of
the limitations of DSA in multidimensional geometry [5–7]. Namely, AP applies a cell-
centered diffusion coupling stencil, thus comprising a smaller algebraic system than does
face-centered DSA, and achieves better spectral properties in model problem configurations
[5]. By definition AP includes cell-centered DSA schemes as special cases, but it is not
constrained in the choice of the diffusion parameters except to require stability of the
accelerated iterations. Spectral analysis of AP predicted its unconditional stability and
robustness, i.e., a spectral radius significantly smaller than 1, for model problems over a
wide range of problem parameters, in particular cell size and total cross section [5–7].
Furthermore, test problems with sharp mesh and material discontinuities demonstrated the
robustness of AP in slab geometry in such instances [5]. In contrast, in multidimensional
non-model problems AP with a reciprocal-averaging mixing formula suffered significant
inefficiency with increasing discontinuity in the total cross section [6, 7].

It was initially suspected that the reason for AP’s inefficiency is a coding bug, a numeri-
cal artifact, or an indication of the inadequacy of the reciprocal-averaging mixing formula.
The first two possibilities were eliminated by conducting a Fourier analysis of AP with the
reciprocal-averaging mixing formula on the periodic horizontal interface (PHI) configura-
tion and analytically predicting the effect of the magnitude of material heterogeneity on
stability and robustness [8]. The PHI configuration is composed of two types, j = 1, 2, of
infinite horizontal stripes one cell thick each, stacked on top of one another so that every
stripe of type 1(2) is sandwiched between two stripes of type 2(1), respectively. Thus the hor-
izontal interface separating stripe types 1 and 2 repeats periodically along the y-dimension
[8]. Many attempts then were made to find a better, unconditionally stable mixing formula
for the PHI configuration with no success [8], and the question became whether there is
any preconditioner with a diffusion stencil that possesses this property. In this paper we
show that no such preconditioner exists. Our conclusion extends beyond AP to include all
cell-centered diffusion operators, and based on numerical experiments we conjecture it will
also hold for face-centered schemes. Also, while the analysis presented here is performed
for the arbitrarily high-order transport method of the nodal type and order 0 (AHOT-N0)
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[9], which continuously spans the entire range of cell sizes with the correct limits of the
spatial weights, our conclusion is valid for all spatial discretizations of Sn methods that
possess correct limits of the spatial weights, namely diamond difference (DD) and step
for thin and thick cells, respectively. [AHOT-N0 is also known as the zeroth-order nodal
integral method (0NIM) in the literature.]

In Section 2 we present a spectral analysis of the source iterations (SI) for the AHOT-N0
using the PHI configuration and observe the effect of material discontinuity on the spectrum.
The stability of a generic AP-accelerated scheme is investigated in Section 3 and two alter-
native stability conditions are derived. We use these stability conditions in Section 4 to show
that for an asymptotic realization of PHI any choice of the acceleration operator parameters
will cause either (a) the flat mode eigenvalue to approach unity or (b) the eigenmode that
is flat in y and high frequency in x to become unstable. This is done for arbitrary pre-
conditioner parameters, implying the impossibility of simultaneous unconditional stability
and robustness for any preconditioner with this coupling stencil. Since viable acceleration
schemes cannot be designed to include a known instability, only preconditioners that suffer
the above symptom (a) in the PHI configuration are worthy of consideration. While not
unconditionally robust, in the PHI configuration these methods still converge faster than SI
because their spectral radius is smaller than, albeit approaching, unity.

The analysis presented in this paper is verified numerically in Section 5 via three codes
based on different transport methods and acceleration schemes, two of which go beyond
the limitations imposed by the analysis, thus suggesting that this result might apply to a
broader class of methods than has been proven here. A brief discussion of the results and
conclusions of this work is included in Section 6.

2. SPECTRAL ANALYSIS OF THE SOURCE ITERATIONS

We start by analyzing the iterative convergence of SI for AHOT-N0 in order to introduce
the notation and to develop some expressions for later use in this paper. The discrete variable
equations for the AHOT-N0 in two-dimensional Cartesian geometry written in weighted
diamond difference (WDD) form are comprised of one balance equation per discrete ordi-
nate, per computational cell, j ,
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with an analogous expression in the y-dimension [9]. In Eqs. (1) and (2) we used standard
notation [9]: c j is the scattering ratio in cell j ;

�x
j ≡ 2|�|

�j a j
, �

y
j ≡ 2|�|

�j b j
, (3)

where � and � are the discrete ordinate’s direction cosines with respect to the x- and y-
axes, respectively; �j is the macroscopic total cross section in cell j ; and a j and b j denote
the cell size in the x- and y-dimensions, respectively.
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In the standard form of the discrete variable transport equation, �̄ j and �̄�
j denote the

angular flux and �th iterate of the scalar flux, respectively, averaged over cell j ; �
y
+ j and �

y
− j

denote the angular flux averaged over the outgoing and incoming, respectively �, x = const
faces of cell j , with analogous difinitions for � x

± j . However, for the benefit of the Fourier
analysis to be conducted shortly, Eq. (1) is written in the homogeneous form, i.e., with
no distributed source, implying that the flux variables in Eqs. (1) and (2) actually denote
iteration residuals. For AHOT-N0 the spatial weights [9]
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j ≡ coth

(
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j
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y
j ≡ coth

(
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y
j

) − �
y
j (4)

vary continuously from the DD value of 0 for thin cells to the step method value of 1
for thick cells. Note that in Eqs. (1) and (2) the discrete ordinate and iteration indices on
the angular flux discrete variables, and in Eqs. (3) and (4) the discrete ordinate index on
angle-dependent parameters, have been suppressed.

The mesh-sweep iteration residual of the scalar flux is computed from

�̃�
j =

∑
�,�

	�̄ j , (5)

and the SI update formula amounts to

�̄�+1
j = �̃�

j . (6)

Without any loss of generality we can assume that in PHI the cell thickness in the x-
direction is a1 = a2 = 1; otherwise the total cross sections �1 and �2 can be scaled to this
effect. The standard approach for determining the spectrum of iterative schemes typically
applies to a model configuration composed of an infinite uniform mesh and a single, ho-
mogeneous material. The iterates, hence the solution, of the discrete variables in such
configurations possess spatial periodicity in multiples of the mesh size that permits decom-
position into Fourier modes. Orthogonality of the Fourier modes permits their separation
so that each mode can be considered separately, providing an expression for the iteration
eigenvalue in terms of the problem parameters. The same principles are applicable in the
PHI configuration, except that in the y-dimension the periodicity is in multiples of b1 + b2,
and the variables in each layer are decomposed separately. Thus we introduce the Fourier
decomposition, with the origin arbitrarily set at the center of a cell in one of the layers
j = 1:
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� x
−2(x, y) = �x eı̂[
x x+
y (y+sg(�)(b1/2+b2))], (7h )
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Note that the subscripts 1 and 2 now refer to the corresponding layer in the PHI con-
figuration, not to a specific cell as in Eqs. (1), (2), and (6). In Eqs. (7) uppercase symbols
denote the Fourier coefficients of the corresponding variable, ı̂ ≡ √−1, sg(.) is the signum
function, and 
x , 
y are the Fourier variables in the x-, y-dimension, respectively. The
continuity of the flux on the interface between materials 1 and 2, i.e., � x

−1 = � x
+2, makes it

unnecessary to decompose them into their Fourier modes.
The spectrum of the SI scheme for the PHI configuration is now obtained by substituting

Eqs. (7) into Eqs. (1), (2), and (6) for each layer j = 1, 2, then eliminating all angular flux
variables. This yields the mapping of the eigenmodes of the previous iterate of the scalar
flux residual, {�̄�
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C ≡
[

c1 0

0 c2

]
, (9c)

where I is the identity matrix and r ≡ 
x/2, s ≡ 
y(b1 + b2)/2.

The rate of convergence of SI is determined by the spectral radius of the B matrix.
For each point in Fourier space, (r, s), B has two eigenvalues; the supremum of the largest
magnitude of these over the entire Fourier space is the spectral radius of SI. Investigating the
spectrum of the SI scheme for the PHI configuration we observe significant similarty to the
model problem spectrum. Namely, the spectral radius is unity and the slowest converging
eigenmodes are the flattest modes; i. e., r, s ∼ 0. One peculiar feature of the PHI case,
however, is the diminishing range of the spectrum with increasing material discontinuity
whereby for each Fourier mode, r, s, the larger (in absolute value) of the two eigenvalues
increases toward unity. In other words, the infimum of the absolute value of the spectrum
over the Fourier space approaches its supremum, i. e., unity, as the material discontinuity
increases. It follows that the dominance ratio of the fundamental mode approaches unity
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and this results in generally slower convergence along a pattern characterized by an initial
linear increase in the iteration residual prior to the onset of exponential attenuation.

Acceleration methods generally replace the update formula, Eq. (6), with a more sophis-
ticated, typically coupled, system of equations that aims at reducing the spectral radius of
the combined system. Preconditioning provides a general framework for this idea by [6, 7]

�̄�+1
j = �̃�

j + D−1
(
�̃�

j − �̄�
j

)
, (10)

where D is a generic preconditioner operator which couples the elements of its operand
in a pattern determined by its sparsity. Restricting D to cell-centered preconditioners that
couple only nearest neighbors, e.g., the diffusion coupling scheme, we obtain the class of
AP whose representation in Fourier space is given by

D

[
�̄�

1

�̄�
2

]
=

[
D1 + 2Dx,1 cos(2r ) 2Dy,1 cos(s)
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]
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where D1 and D2 are the self-coupling elements of D for cells in stripes 1 and 2, respectively;
Dx, j , j = 1, 2, are the coupling elements in the x-dimension for each stripe type j ; and Dy, j

are the elements coupling the scalar flux residual in a cell type j to its value in cell type
j ′ �= j , along the y-dimension. The AP as implemented and tested earlier is based on
expressions for the preconditioner elements derived for model problem configuration and
mixed via the traditional reciprocal-averaging formula [6, 7]. In contrast, here we leave
the preconditioner elements completely arbitrary and independent, i.e., no mixing formula,
in a search for values that would render the iterative process for the PHI configuration
unconditionally and simultaneously stable and robust.

Decomposing the updating formula, Eq. (10), into Fourier modes and then using Eqs. (8)
and (11), we obtain the mapping of the AP-accelerated eigenmodes of the scalar flux residual

���+1 = M ���, (12)

where we have defined

��� ≡ {
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�
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}T
, � = �, � + 1, (13a)

M ≡ B + D−1(B − I). (13b)

The spectral radius of matrix M determines the stability of the accelerated iterations.

3. STABILITY CONDITIONS FOR THE FLAT EIGENMODES

We now study the behavior of M near the origin in Fourier space and derive stability
conditions for the flat eigenmode, r, s → 0. Expanding Eq. (9b) in a truncated series about
the origin in Fourier space yields

A → A0 + rAr + sAs + r2Ar2 + s2As2 , (14)

where

A0 = I + 1
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Inverting Eq. (14) and then substituting the resulting series into the definition of B,
Eq. (9a), results in a truncated series of the form

B → B0 + r2Br2 + s2Bs2 , (16)

where the first-order terms vanish assuming symmetry of the angular quadrature, and where

B0 =
{∑

�,�

	A−1
0

}
C = C +

[−E1 E1

E2 −E2

]
C, (17a)
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≡
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2,2

]
C, t ≡ r or s. (17b)

The elements E j , �t
j, j ′ , j , j ′ = 1, 2 and t = r or s, are obtained by taking the appropriate

limits of Eq. (9b). For example,

E j ≡
∑
�,�

	 �
y
j

�
y
1 + �

y
2 + �

y
1 + �

y
2

, j = 1, 2. (18)

It is easy to show that in case of perfect scattering, C = I, if the preconditioner is not
singular at r = s = 0 then the spectral radius of M is bounded from below by 1, implying lack
of robustness. Hence a necessary condition for stability and robustness of the preconditioned
iterations is the vanishing of the determinant of D at the origin in Fourier space,

D̃1 D̃2 = 4Dy,1 Dy,2, (19a)

D̃ j ≡ D j + 2Dx . j . (19b)

To determine the behavior of D−1 near the origin in Fourier space, first we expand D, as
defined by Eq. (11), in a truncated series,

D →
[

D1 + 2Dx,1 2Dy,1

2Dy,2 D2 + 2Dx,2

]
− 4r2

[
Dx,1 0

0 Dx,2

]
− s2

[
0 Dy,1

Dy,2 0

]
. (20)
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Inverting this matrix, then applying the robustness condition, Eq. (19a), produces

D−1 → 1

�

[
D̃2 − 4r2 Dx,2 (−2 + s2)Dy,1

(−2 + s2)Dy,2 D̃1 − 4r2 Dx,1

]
, (21)

where � denotes the determinant of the preconditioner near the origin

� = −4r2(D̃1 Dx,2 + D̃2 Dx,1) + 4s2 Dy,1 Dy,2. (22)

Clearly M does not exist at the origin [see Eqs. (13b) and (19a)] and only its limit as
r, s → 0, M0, can be considered. Substituting Eqs. (17) and (21) into Eq. (13b), and after
some algebra, this limit of the elements of M becomes

M0
j, j → − E j D̃ j ′ + 2E j ′ Dy, j

�
+ (1 − E j ) + r2
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D̃ j ′�r
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r
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)
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(
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j, j + (
E j ′ − 2�s

j ′, j

)
Dy, j

) + O(r2, s2), (23a)
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j, j ′ → E j D̃ j ′ + 2E j ′ Dy, j

�
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�
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)
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j, j ′ −
(
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)
Dy, j

) + O(r2, s2), j, j ′ = 1, 2. (23b)

It is evident that M0 has two scales near the origin in Fourier space: the first diverges like
O(r−2, s−2), and the other is O(1). Separating the unbounded component then requiring
the O(r−2, s−2) term in the asymptotic expansion of the spectrum of M0 to vanish exactly
yields the condition

E1 D̃2 + E2 D̃1 + 2(E2 Dy,1 + E1 Dy,2) = 0. (24)

Computing the eigenvalues of M under the condition, Eq. (24), yields
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)}1/2
]
, (25)

where M0
j, j ′ are the O(1) terms in the elements of M0 as defined in Eqs. (23). Clearly this

diverges at the origin as O(r−1, s−1) unless at least one of the two conditions

M0
2,1 + M0

2,2 − M0
1,1 − M0

1,2 = 0, (26a)

E j D̃ j ′ + 2E j ′ Dy, j = 0, j ′ �= j = 1, 2, (26b)

is satisfied. Substituting the definitions of M0
j, j ′ into Eq. (26a) and then separately setting

the O(r2) and O(s2) terms to zero yields(
�r
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2,2

)
(D̃1 + 2Dy,1) − (
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1,1 + �r
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)
(D̃2 + 2Dy,2) = 0, (27a)(
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)
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1,2

)
(D̃2 + 2Dy,2) = 0. (27b)
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Simplifying by solving Eqs. (27) simultaneously produces the first stability condition
(1SC),

D̃ j ≡ D j + 2Dx, j = −2Dy, j , j = 1, 2, (28)

since the �s are a function of the transport problem parameters, independent of the pre-
conditioner. Alternatively, solving Eqs. (26b) simultaneously produces the second stability
condition (2SC),

D̃ j = −2(E j/E j ′ )Dy, j ′ , j ′ �= j = 1, 2. (29)

Satisfaction of at least one of the two conditions 1SC and 2SC is necessary for the flat mode
to be stable.

4. IMPOSSIBILITY OF UNCONDITIONAL STABILITY AND ROBUSTNESS

An acceleration method utilizing the cell-centered AP formalism has been developed
for WDD in two-dimensional geometry and shown, using homogeneous model problem
analysis and extensive numercial testing, to be stable and robust [7]. Hence, the question is
not whether there is a stable and robust AP, since at least one exists; rather, the question is
whether the stability and robustness illustrated in [7] are unconditional in the presence of
unconstrained material discontinuities. Numerical results suggest a negative answer to this
question, thereby motivating the search for another AP scheme, i.e., a different formula for
the AP parameters in terms of problem specifications, that is potentially unconditionally
stable and robust. The result of this section, namely the impossibility of an AP scheme that
is unconditionally stable and robust, preempts such a search. It is still a fact, however, that a
well-designed AP (e.g., [7]) is stable and more robust than SI for most difficult-to-converge
configurations but can require an increasing number of iterations to converge as the problem
is made harder. Furthermore, while it is not proven here, numerical evidence is presented
in Section 5 indicating that other numerical methods for solving the discrete ordinates
equations accelerated via face-centered DSA exhibit similar conditional robustness in the
PHI configuration.

In order to establish the impossibility of unconditional and simultaneous stability and ro-
bustness of any cell-centered AP-type acceleration scheme we need only construct one case
where no choice of the preconditioner parameters (D̃ j , Dy, j , j = 1, 2) results in a spectral
radius bounded below 1 regardless of problem specifications (b j , �j ,�x

j ,�
y
j , j = 1, 2, �,�).

This is accomplished for the specific PHI configuration: �1 = 1/�2 ≡ �, b1 = b2 = �2, in
the limit � → 0. This limit defines a sequence of PHI problems in which the optical height
of the two layers diminishes like �3 and �, while the optical width in the first layer dimin-
ishes like � and in the other layer increases like �−1. For a generic member of this sequence
we focus on two particular eignemodes, r, s → 0 and r = /2, s = 0, and show that for
both stability conditions, Eqs. (28) and (29), the condition for robustness of the former
eigenmode results in asymptotic estimates of the preconditioner parameters that cause the
latter eigenmode to become unstable. Since stability of an acceleration scheme is a more
essential property than robustness, it follows that the most one can expect of a cell-centered
AP is unconditional stability, but conditional robustness [7].

It is important for the success of the ensuing asymptotic analyses that entail two asymp-
totic limits, namely r, s → 0 and � → 0, that we define the manner in which the limit points
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are approached. A fixed, finite � defines a specific PHI configuration for which the limit
r, s → 0 employed to derive the stability conditions in Section 3 is valid. Smaller values
of � in the sequence � → 0 will require considering the Fourier variables, r, s, in an ever
tighter region around the origin in order for the analysis, hence the stability conditions, to
remain valid. In other words, r, s must approach the origin faster than � → 0.

First we determine the asymptotic behavior of the various coefficients in the B matrix in
this limit near the origin,

[
E1

E2

]
→

[
1 − �2

�2

]
, (30a)

[
�r

1,1 �r
1,2

�r
2,1 �r

2,2

]
→

[
0 −(

1
3 + 12�2

)
�2

0 −(
1
3 + 12�2

)
�2

]
, (30b)

[
�s

1,1 �s
1,2

�s
2,1 �s

2,2

]
→

[ −4�2 + (1 + 12�2)�2 −4�2�−2 + (
1
2 + 12�2

)
−4�2 + (

1
2 + 12�2

)
�2 −4�2�−2 + 12�2

]
, (30c)

where the overbar indicates a weighted sum over discrete ordinates, e.g., �2 ≡ ∑
�,� 	�2,

and where we have assumed perfect scattering, c1 = c2 = 1. Note that due to the assumed
symmetry of the angular quadrature, �̄ = 0 and �̄ = 0. These expressions define the asymp-
totic behavior of the SI scheme near the origin in Fourier space for the case under consid-
eration when � → 0.

Next we evaluate the B matrix at the eigenmode r = /2, s = 0 in the limit � → 0 starting
with the expressions for the A matrix derived earlier,

B(/2, 0) =
[

0 �̃

0 �̃

]
+ O(�), (31)

where we have defined �̃ ≡ (1 + 12�2)−1.

4.1. The First Stability Condition

Now we apply 1SC to AP and show that the robustness of the flat mode, r, s → 0, results
in an unbounded eigenvalue at r = /2, s = 0.

4.1.1. Robustness of the Flat Eigenmode: r , s → 0

The limit of the eigenvalues of the M matrix under 1SC near the origin in Fourier space
is given by Eq. (25). Upon applying 1SC to Eq. (25) the O(�−1) term vanishes and the
discriminant becomes a perfect square yielding the simple expression �± = [M0

1,1 + M0
2,2 ±

(M0
1,2 + M0

2,1)]/2, which in the limit � → 0 becomes

�− = 4r2[�2 Dx,1 + (1 − �2)Dx,2] + s2[�2 Dy,1 + (1 − �2)Dy,2]

8r2(Dx,1 Dy,2 + Dx,2 Dy,1) + 4s2 Dy,1 Dy,2
, (32a)

�+ = 1 + {2r2�2(1 + 36�2)(Dy,1 + Dy,2) + s2[24�2(�−2 − 2 − 3�2)(Dy,1 + Dy,2)

− 3(�2 Dy,1 + Dy,2) − 6�2 Dy,2]} ÷ {24r2(Dx,1 Dy,2 + Dx,2 Dy,1) + 12s2 Dy,1 Dy,2}.
(32b)
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Now we compute the leading term of �+ along the r - and s-axes keeping in mind that
the asymptotic behavior of the preconditioner parameters with respect to � is yet undeter-
mined; that is, Dy, j = O(�Ny, j ), j = 1, 2. Evaluating �+ along the s-axis, then collecting the
coefficients of Dy,1 and Dy,2 in the numerator and allowing the O(�−2) terms to dominate
higher order terms, yields

�+ → 1 + 2�2

�2

[
1

Dy,1
+ 1

Dy,2

]
, as s → 0, (33)

which diverges as � → 0 unless Ny, j ≤ −2. Furthermore, in order to prevent a unity eigen-
value (which would imply lack of robustness of this eigenmode) it is necessary that

max[Ny,1, Ny,2] = −2. (34)

Next evaluating �+ along the r -axis,

�+ → 1 + �2(1 + 36�2)(Dy,1 + Dy,2)

12(Dx,1 Dy,2 + Dx,2 Dy,1)
, as r → 0, (35)

which implies that a necessary condition for robustness is

(Dy,1 + Dy,2)

(Dx,1 Dy,2 + Dx,2 Dy,1)
= O(�−2). (36)

We now use Eqs. (34) and (36) to show that Dy, j dominates Dx, j for j = 1, 2 as � → 0.
First we note that Eq. (36) amounts to

min[Nx,2 + Ny,1, Nx,1 + Ny,2] = min[Ny,1 + 2, Ny,2 + 2], (37)

where Nx, j are defined in analogy to Ny, j . Suppose by Eq. (34) Ny,1 ≤ Ny,2 = −2; then in
Eq. (37) either

Nx,2 + Ny,1 ≥ Nx,1 + Ny,2 = Ny,1 + 2

⇒ Nx,2 ≥ 2 > Ny,2 and Nx,1 = Ny,1 + 4 > Ny,1

or

Nx,1 + Ny,2 ≥ Nx,2 + Ny,1 = Ny,1 + 2

⇒ Nx,1 ≥ Ny,1 + 4 > Ny,1 and Nx,2 = 2 > Ny,2.

Hence under assumption Ny,1 ≤ Ny,2 = −2 we must have

Nx, j > Ny, j , j = 1, 2. (38)

Analogously, if by Eq. (34) Ny,2 ≤ Ny,1 = −2, the same inequality (38) is reached. We now
use this inequality to show that the eigenvalue at r = /2, s = 0 is O(�−2), i.e., unbounded
as � → 0.
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4.1.2. Instability of the Eigenmode r = /2, s = 0

Substituting r = /2, s = 0 in the Fourier-decomposed preconditioner operator [see
Eq. (11)] and applying 1SC and inverting the resulting matrix we obtain

D−1(/2, 0) → −1

8Dx,1 Dx,2 + 4Dx,2 Dy,1 + 4Dx,1 Dy,2

[
2Dx,2 + Dy,2 Dy,1

Dy,2 2Dx,1 + Dy,1

]
.

(39)

This can be simplified in the limit � → 0 by using inequality (38) in the diagonal elements,
and by noting that the denominator can be rewritten as

4Dx,1(Dx,2 + Dy,2) + 4Dx,2(Dx,1 + Dy,1) ∼ 4(Dx,1 Dy,2 + Dx,2 Dy,1), (40)

due to inequality (38), to produce

D−1(/2, 0) → −1

4(Dx,2 Dy,1 + Dx,1 Dy,2)

[
Dy,2 Dy,1

Dy,2 Dy,1

]
. (41)

The preconditioned iterations for this eigenmode, under 1SC, are governed by

M(/2, 0) →
[

Dy,2 Dy,1 − �̃[Dy,1 + Dy,2 − 4(Dx,2 Dy,1 + Dx,1 Dy,2)]

Dy,2 Dy,1 − �̃[Dy,1 + Dy,2 − 4(Dx,2 Dy,1 + Dx,1 Dy,2)]

]

÷ [4(Dx,2 Dy,1 + Dx,1 Dy,2)]. (42)

Since the two rows in Eq. (42) are identical, the two eigenvalues of M(/2, 0) are equal to
zero and the sum of the elements in either row. It follows that a lower bound on the spectral
radius is provided by

�l.b. =
∣∣∣∣�̃ + 1

4
(1 − �̃)

(
Dy,1 + Dy,2

Dx,2 Dy,1 + Dx,1 Dy,2

)∣∣∣∣. (43)

Since �̃ < 1 ⇒ 1 − �̃ = O(�0), the last term in the expression for �l.b. is O(�−2) by virtue of
Eq. (36) implying instability in the limit � → 0. Note that the instability of this eigenmode
is not a general property of AP; rather, it is a consequence of the robustness condition of
the flat mode in the PHI configuration.

4.2. The Second Stability Condition

In this section we apply 2SC, Eq. (29), to AP and show that a necessary condition for
the robustness of the flat mode, r, s → 0, of the resulting operator produces an unbounded
eigenvalue for the mode r = /2, s = 0.

4.2.1. Robustness of the Flat Eigenmode: r , s → 0

Unlike 1SC, 2SC does not produce a simple discriminant for the expressions of �± in the
neighborhood of the origin in Fourier space. However, it is possible to obtain simple formulas
for the eigenvalues along the s-axis, as follows. Substituting r = 0 and 2SC [Eq. (29)] into
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the definition of M0 [Eq. (23)] results in

M0 (0, s → 0) ∼


 1 − E1 + E2

4Dy,2
− E2�s

1,1 + E1�s
2,1

2E1 Dy,2
E1 − E2

4Dy,2
− E2�s

1,2 + E1�s
2,2

2E1 Dy,2

E2 − E1
4Dy,1

− E1�s
2,1 + E2�s

1,1

2E2 Dy,1
1 − E2 + E1

4Dy,1
− E1�s

2,2 + E2�s
1,2

2E2 Dy,1


. (44)

Using the asymptotic expansions of the parameters E j and �s
j, j ′ [Eqs. (30)], Eq. (44)

simplifies to

M0 (0, s → 0) ∼


 �2

(
1 + 2�2

�2 Dy,2

)
1 + 2�2

�2 Dy,2

�2
(

1 + 2�2

�4 Dy,1

)
1 + 2�2

�4 Dy,1


, (45)

whose two eigenvalues are

�+ → 1 + 2�2

(
�−4

Dy,1
+ 1

Dy,2

)
, (46a)

�− → 0, as s → 0, � → 0. (46b)

In Eqs. (45) we have set �/� = 0 by virtue of the assumed symmetry of the angular
quadrature. (An earlier presentation [10] of the proof in this section is in error because it did
not recognize that the assumed symmetry of the angular quadrature implies �/� = 0 and
�̄ = 0. While the conclusion of the proof as presented here is the same, the steps needed
to reach it, and intermediate results, are different.) As in the case of 1SC, here also �+
diverges as � → 0 unless Ny,1 ≤ −4 and Ny,2 ≤ 0. Furthermore, in order to prevent a
unity eigenvalue (which would imply lack of robustness) it is necessary that at least one
equality hold; i.e.,

Ny,1 = −4, Ny,2 ≤ 0 or Ny,1 ≤ −4, Ny,2 = 0. (47)

Inequality (47) automatically guarantees that �− = O(�2). Even though a simple form of the
eigenvalues along the r -axis is not available, we derive conditions amounting to the domi-
nance of the Dy, j coefficients over the Dx, j ′ that are necessary to show that the eigenvalues
at r = /2, s = 0 are unbounded. This is accomplished by substituting s = 0 in the formula
for the M0 matrix, then applying the limit � → 0 to obtain the simplified expression

M0(r → 0, 0) =


 �2 + 4Dx,2

�̃
1 + 2�2(1 + 36�2)Dy,1

3�̃
− 4Dx,2

�̃

�2 − 4�2 Dx,1

�̃
1 + 2(1 + 36�2)Dy,2

3�̃
+ 4�2 Dx,1

�̃


, (48)

where we have defined

�̃ ≡ 8(�2 Dx,1 Dy,1 + �−2 Dx,2 Dy,2). (49)

Now we define the ratio

� ≡ Dx,1 Dy,1

Dx,2 Dy,2
= O(�N ), (50)

and we consider the two possibilities.
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1. N ≥ −4: In this case (1 + �4�) = O(�0) and Eq. (48) simplifies to

M0(r → 0, 0) ∼


 ��2 1 + (1 + 36�2)

12
�4 Dy,1

Dx,2 Dy,2(1 + �4�)

�2 1 + (1 + 36�2)
12

�2

Dx,2(1 + �4�)


, (51)

where � ≡ 1 + [2Dy,2(1 + �4�)]−1 = 1 + O(�−Ny,2 ) = O(�0) by inequality (47). Another
simplification in Eq. (51) arises from �4�/2Dy,1(1 + �4�) = O(�4+N−Ny,1 ) → 0, as � →
0, at least as fast as �4 by virtue of inequality (47). The eigenvalues of the matrix in Eq. (51)
simplify further to

�± ∼ 1

2

[
1 + (1 + 36�2)

12(1 + �4�)

�2

Dx,2
±

√(
1 + (1 + 36�2)

12(1 + �4�)

�2

Dx,2

)2

+ (1 + 36�2)

3(1 + �4�)

�6 Dy,1

Dx,2 Dy,2

]
.

(52)

We show that Nx,2 ≤ Ny,1 + 4 contradicts a necessary condition for the robustness of the
flat eigenmode. By this hypothesis the last term under the square root sign in Eq. (52) is
of order O(��), � = 6 + (Ny,1 − Nx,2) − Ny,2 ≥ 2 − Ny,2. Inequality (47) then provides
that � ≥ 2, so that this term is dominated by 1 and the eigenvalues become

�± ∼ 1 + (1 + 36�2)

12(1 + �4�)

�2

Dx,2
and 0. (53)

Robustness of this eigenmode, therefore, requires that Nx,2 = 2, in contradiction to the
hypothesis combined with inequality (47). Hence we conclude that the condition Nx,2 >

Ny,1 + 4 is necessary for robustness of the flat eigenmode. Substituting this condition into
this case’s hypothesis, N ≥ −4, yields −4 ≤ Nx,1 + (Ny,1 − Nx,2) − Ny,2 < −4 + Nx,1 −
Ny,2, which implies Nx,1 > Ny,2. Note that in allowing 1 to dominate the last term under the
square root sign in Eq. (52) we assumed that the squared term is not zero; had this been the
case, then Nx,2 = 2 and the contradiction to the hypothesis would have arisen immediately.

2. N < −4: In this case (1 + �4�) ∼ �4� and Eq. (48) simplifies to

M0(r → 0, 0) ∼


 �2 1 + (1 + 36�2)

12
Dy,1

�Dx,2 Dy,2

�2 1 + (1 + 36�2)
12

�−2

�Dx,2


, (54)

where we have applied two asymptotic simplifications.

• �−2/2�Dy,2 is of order (−2 − N ) − Ny,2 > 2 − Ny,2 ≥ 2 by inequality (47); thus this
term is dominated by �2.

• �−2/Dy,1 = O(�−2−Ny,1 ) → 0 as � → 0 at least as fast as �2 by inequality (47); thus
this term is dominated by 1 and 1/Dy,1 is dominated by �2.

The eigenvalues of the matrix in Eq. (54) follow

�± ∼ 1

2

[
1 + (1 + 36�2)

12

�−2

�Dx,2
±

√(
1 + (1 + 36�2)

12

�−2

�Dx,2

)2

+ (1 + 36�2)

3

�2 Dy,1

�Dx,2 Dy,2

]
.

(55)



ITERATIVE TRANSPORT-METHOD ACCELERATION 227

Again we show a contradiction if Nx,2 ≤ Ny,1 + 4. Under such a condition the last term
under the square root sign is O(��), � = 2 + Ny,1 − N − Nx,2 − Ny,2 ≥ −2 − N − Ny,2

by hypothesis, and � ≥ −2 − N by inequality (47). Hence by this case’s condition on N
we obtain � > 2, implying that this term is dominated by 1 and the eigenvalues, Eq. (55),
become

�± ∼ 1 + (1 + 36�2)

12

�−2

�Dx,2
and 0. (56)

Robustness of this eigenmode requires that Nx,2 + N = −2 ⇒ Nx,2 − 4 > −2 ⇒ Nx,2 >

2, in contradiction to the hypothesis Nx,2 ≤ Ny,1 + 2. Hence the condition Nx,2 > Ny,1 + 2
is necessary for the robustness of this eigenemode. The above discussion permits two
possibilities.

• Nx,1 ≥ 2; then inequality (47) immediately produces Nx,1 > Ny,2.
• Nx,1 < 2; then the last term under the square root in Eq. (55) is of order 2 − Nx,1 > 0,

implying that it is dominated by 1. In this case, too, it follows that Nx,2 + N = −2 is
necessary for robustness, and again we obtain Nx,1 > Ny,2.

To summarize the two possibilities analyzed above, the conditions

Nx,1 > Ny,2, Nx,2 > Ny,1 + 4 (57)

are necessary for the robustness of the flat eigenmode as r → 0 on the r -axis. Now we use
inequality (57) to show that the eigenvalue at r = /2, s = 0 is unbounded.

4.2.2. Instability of the Eigenmode r = /2, s = 0

Upon applying 2SC to the inverse of the preconditioner matrix at this eigenmode, then
taking the limit � → 0 and using inequality (57), we obtain

D−1(/2, 0) = − 1

4(�4 Dx,1 Dy,1 + Dx,2 Dy,2)

[
�4 Dy,1 �2 Dy,1

�2 Dy,2 Dy,2

]
. (58)

The preconditioned iterations for this eigenmode are governed by

M(/2, 0) =

 �4 Dy,1

4(�4 Dx,1 Dy,1 + Dx,2 Dy,2) �̃ + (1 − �̃) �2 Dy,1

4(�4 Dx,1 Dy,1 + Dx,2 Dy,2)

�2 Dy,2

4(�4 Dx,1 Dy,1 + Dx,2 Dy,2) �̃ + (1 − �̃) Dy,2

4(�4 Dx,1 Dy,1 + Dx,2 Dy,2)


. (59)

The supremum of the magnitude of the two eigenvalues of the matrix M(/2, 0) is bounded
from below by half the sum of its diagonal elements, which can be simplified to

�l.b. =
∣∣∣∣ �̃

2
+ �4 Dy,1[1/Dy,2 + (1 − �̃)/�4 Dy,1]

8Dx,2(1 + �4�)

∣∣∣∣. (60)

Since �̃ < 1 ⇒ 1 − �̃ = O(�0), and using inequality (47), we conclude that

1

Dy,2
+ 1 − �̃

�4 Dy,1
= O(�0). (61)

For � = O(�N ) consider the two possibilities.



228 Y. Y. AZMY

• N ≥ −4; then �4 Dy,1/Dx,2 = O(�4+Ny,1−Nx,2 ), which diverges as � → 0 since Ny,1 −
Nx,2 + 4 < 0 by inequality (57).

• N < −4; then Dy,1/�Dx,2 = Dy,2/Dx,1 = O(�Ny,2−Nx,1 ), which also diverges as � → 0
by inequality (57).

In summary, necessary conditions for the stability and robustness of the flat mode result in
the instability of the eigenmode (/2, 0) in the limit � → 0 of the PHI configuration.

5. NUMERICAL RESULTS

As explained in Section 1, the impetus for analyzing the iterative performance of acceler-
ation schemes in configurations that include some form of material discontinuity arose from
earlier numerical tests involving AP for WDD methods [6, 7]. These results illustrated the
failure of spectral analysis of AP conducted on a standard model configuration to predict
iterative performance in the presence of sharp material discontinuities. This motivated a
spectral analysis of AP in the PHI configuration, which demonstrated that while sharp ma-
terial discontinuity did not break the unconditional stability of AP, its robustness degraded,
requiring a number of iterations that grew larger with the material discontinuity [8]. Success
of the PHI configuration in predicting this behavior of AP for WDD led to extension of
the analysis to a DSA scheme employed in accelerating an even-parity Sn method [11].
The conclusion of that study, supported by numerical tests, is consistent with that of the
AP scheme stated above. The numerical results reported in Refs. [6, 7, 11] can be viewed
as verifications of the theoretical result of this paper that goes beyond the limitations set
forth; namely, they cover two different numerical methods, with two different acceleration
schemes, and non-PHI configurations.

In order to more faithfully test the results of the foregoing analysis we use three discrete
ordinates codes that employ a variety of numerical methods and acceleration schemes to
solve a sequence of PHI problems with diminishing �. Two caveats regarding the contents
of this section are worth noting from the outset. First, this paper proves a negative result,
namely that for the class of WDD methods no cell-centered preconditioner with the dif-
fusive coupling stencil is unconditionally and simultaneously stable and robust. Clearly
the correctness of this result cannot be verified using a finite set of methods. Hence, the
numerical results presented here must be interpreted as a check that existing accelerated
discrete ordinates codes behave as predicted by the PHI analysis, even if they are based on
different numerical methods and acceleration techniques than are employed in the analysis.
Second, the measured performance reported here should not be used to compare acceleration
methods because the quality of the converged solutions is not necessarily the same across
methods. Furthermore, one of the methods converges higher moments of the flux, not just
the lowest order moment, thereby potentially implying a more stringent convergence than
for the low-order methods. The only relevant information to be judged by these numerical
experiments is whether the spectral radius of the methods tested attains values far above
the range predicted by Fourier analysis of the homogeneous configuration.

The problem configuration employed in the tests reported below is the finite approxi-
mation of the PHI configuration depicted in Fig. 1. The material assignment to rows of
cells follows the PHI pattern; i.e., odd-indexed rows are assigned material 1, even-indexed
rows are assigned material 2. Both materials have a unit scattering ratio, and the total cross-
sections are � and �−1 for materials 1 and 2, respectively. The problem domain is source
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FIG. 1. Finite approximation of the PHI configuration employed in numerical tests. The total cross sections
are �1 and �2, in the shaded and unshaded stripes, respectively.

free except for cell i = 1, j = 1, which contains a fixed distributed source of strength 109,
and the angular quadrature used is S6. The relative pointwise convergence criterion is set
to 10−6 and the maximum number of iterations is limited to 500. Upon convergence, the
spectral radius is computed as the ratio of the L2 norm of the iterative residual in the last
iterate to that in the previous iterate [13].

The test problem is solved for the sequence � = {1/10, 1/20, 1/40, 1/80, 1/160}, and
the sequence of meshes J = {10, 20, 40, 80, 160}. The � sequence is in accordance with the
limit examined in Section 4. The J sequence is selected to cause the optical dimensions of
the entire problem to increase with increasing J , thereby reducing the effect of leakage at
the right and top boundaries on the spectral properties. Furthermore, increasing J implies
an increasing number of eigenmodes for the underlying iterative operators, causing its
spectrum to better approximate the continuum considered in the analysis.

The first method tested is the one analyzed in this paper: the AHOT-N0 (a WDD method)
accelerated with AP [7]. The spectral radius of the iterative process in the PHI configuration
is presented in Table I. Note that the sequence of spectral radius values for a fixed value
of � and increasing J intuitively approximates the limit r, s → 0 analyzed in the body of
this paper. The decreasing spectral radius for fixed J as � decreases is a consequence of
increasing leakage at the right and top boundaries of the problem as the total optical size
of the problem diminishes. The pattern of increasing spectral radius for each value of � as
J increases is a clear manifestation of the behavior predicted by the spectral analysis of
the PHI configuration, particularly since the reported values of the spectral radius are much
larger than expected from the spectral analysis of the homogeneous model problem [7]. To
further illustrate this fact, a homogenized version of the finite PHI configuration, wherein
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TABLE I

Spectral Radius of AP-Accelerated Iterations for the PHI Configuration as a Function

of � and Number of Computational Cells: AHOT-N0 Method

�−1

Mesh 10 20 40 80 160

10 0.100 0.039 0.010 0.002 4 × 10−4

20 0.241 0.132 0.044 0.010 0.002
40 0.422 0.316 0.151 0.046 0.010
80 0.581 0.539 0.360 0.160 0.048

160 0.683 0.713 0.609 0.386 0.165

the same mesh structure is homogeneously covered with material 1 and separately with
material 2, results in spectral radii, as shown in Tables II and III, respectively, well within
the theoretically predicted range [7]. Hence these numerical tests illustrate the stability of
AP for AHOT-N0 in the finite PHI configuration, albeit at a loss of unconditional robustness,
in accordance with the theoretical result. By loss of unconditional robustness we mean that
for every small ε > 0, there is a value of � small enough to yield a spectral radius for
the AP-accelerated AHOT-N0 equal to 1-ε, in contrast to the homogeneous configurations
where the spectral radius is far smaller than 1 for all meshes and material properties.

In order to demonstrate the potential susceptibility of alternative numerical methods
accelerated with schemes different from the one analyzed in this paper we conduct the same
numerical tests described above using two previously reported codes. A discrete ordinates
code employing a corner balance (CB) spatial differencing scheme is tested first. This code,
CBP1–DSA, uses a DSA operator based on a spatial discretization of the P1 equations to
accelerate iterative convergence [12]. In two-dimensional Cartesian geometry the resulting
accelerated iterations were shown, via Fourier analysis of the homogeneous model problem
congfiguration, to possess a spectral radius of 0.46 for S2, and ≤0.27 for Sn , n = 4, 8 [12].
Numerical tests with mild material discontinuity yielded rates of convergence consistent
with the analytical result. However, upon solving the finite PHI problems with CBP1–DSA,
substantial deterioration of the spectral radius is observed, as shown in Table IV, to values
far larger than predicted by the homogeneous model problem spectral analysis. The pattern

TABLE II

Spectral Radius of AP-Accelerated Iterations for the Homogeneous Configuration,

�1, as a Function of � and Number of Computational Cells: AHOT-N0 Method

�−1

Mesh 10 20 40 80 160

10 2 × 10−4 3 × 10−6 3 × 10−8 3 × 10−10 3 × 10−13

20 8 × 10−4 2 × 10−5 2 × 10−7 2 × 10−9 10−10

40 0.003 8 × 10−5 10−6 10−8 10−10

80 0.007 3 × 10−4 6 × 10−6 8 × 10−8 7 × 10−10

160 0.015 0.001 2 × 10−5 4 × 10−7 4 × 10−9
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TABLE III

Spectral Radius of AP-Accelerated Iterations for the Homogeneous Configuration,

�2, as a Function of � and Number of Computational Cells: AHOT-N0 Method

�−1

Mesh 10 20 40 80 160

10 0.027 0.017 0.009 0.003 0.001
20 0.036 0.040 0.018 0.009 0.004
40 0.039 0.037 0.048 0.018 0.009
80 0.038 0.040 0.038 0.056 0.019

160 0.038 0.040 0.041 0.038 0.064

in Table IV of increasing spectral radius with increasing J for each value of � is similar to
that in Table I and is consistent with the theoretical result of the analysis in Section 4 even
though the numerical method and the diffusion accelerator are corner based.

Finally, the diffusion-accelerated linear–bilinear nodal method is tested [13]. This dis-
crete ordinates method is based on a bilinear expansion of the flux variables over a cell
and is accelerated via a multilevel DSA whose variable unknowns are corner based. Thus,
this method deviates from the assumptions in the analysis in two ways: the local expansion
order is higher than constant, and the acceleration equations are not cell centered. Spectral
analysis of this scheme on a homogeneous model configuration showed it to be uncondi-
tionally stable and robust with a spectral radius smaller than 0.63 and 0.45 for S2 and Sn ,
n ≤ 4, respectively. Nevertheless, in the finite PHI configuration this method exhibits only
conditional robustness, as illustrated by the measured spectral radius reported in Table V.

The pattern of increasing spectral radius with increasing J is similar to that in Table I
with two exceptions. First, a smaller value of the spectral radius is observed for the case
J = 160, � = 1/20 than for all neighboring points in the table. We conjecture that this is
an anomaly in the L2 norm of the error not indicative of the true spectral radius of the
iterative procedure, which converged after 388 iterations, inconsistent with the value 0.392
and the 10−6 convergence criterion. Second, the cases with � ≤ 1/80 diverge; most likely
this divergence is numerical in nature resulting from numerical imprecision noise, not a
genuine property of the acceleration scheme.

TABLE IV

Spectral Radius of DSA-Accelerated Iterations for the PHI Configuration as a Function

of � and Number of Computational Cells: CBP1–DSA Method

�−1

Mesh 10 20 40 80 160

10 0.336 0.219 0.113 0.053 0.025
20 0.495 0.385 0.233 0.117 0.055
40 0.664 0.563 0.409 0.238 0.119
80 0.807 0.724 0.608 0.422 0.242

160 0.890 0.853 0.770 0.631 0.431
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TABLE V

Spectral Radius of DSA-Accelerated Iterations for the PHI Configuration as a Function

of � and Number of Computational Cells: BLN Method

�−1

Mesh 10 20 40 80 160

10 0.355 0.254 0.192 Da D
20 0.543 0.417 0.317 D D
40 0.717 0.607 0.452 D D
80 0.836 0.668 0.624 D D

160 0.901 0.392 0.671 D D

a D, Iterations diverged, causing overflow.

6. CONCLUSION

We have shown that there exists no preconditioner with the AP cell-centered coupling
stencil that is unconditionally and simultaneously stable and robust for weighted-difference
particle transport methods. The only conditions applied to derive this result for the AHOT-
N0 are the two stability conditions (one at a time) and the robustness of the flat mode. If
the latter condition is not imposed, i.e., if the eigenvalue near the origin in Fourier space is
allowed to approach unity as � → 0, as indeed is the case with the reciprocal-averaging mix-
ing formula, then the r = /2, s = 0 mode’s eigenvalue remains finite. Hence, we conclude
that in the context of the PHI analysis reciprocal-averaging mixing provides as small a lower
bound on the spectral radius, 1, as can be achieved in the limit � → 0. Numerical tests that
demonstrate the unconditional stability, but conditional robustness of AP attest to this fact.

In retrospect, this result should not be too surprising since by physical arguments it is
known that the diffusion approximation does not hold where the flux is highly anisotropic.
In the PHI configuration considered in this work, as � → 0, one of the layers becomes
optically thick while the other layer approaches a void, producing severe anisotropy in the
angular flux near the interface.

This result should not be misinterpreted as implying the worthlessness of preconditioning,
e.g., DSA. Indeed there is ample evidence in the literature on the significant acceleration
achieved with diffusion-like preconditioners compared to unaccelerated source iterations.
In fact the PHI analysis presented here illustrates that in a perfectly scattering medium,
while for any finite � the spectral radius of SI is 1, the spectral radius of AP is bounded
below 1. As � → 0 this lower bound approaches 1, but still this is better than SI for any
practically realizable � > 0.

The correct interpretation of the result reached here is that unconditionally and simul-
taneously stable and robust preconditioners of the diffusive type may exist only in one-
dimensional geometry, and in multidimensional configurations with mild material disconti-
nuities. From the practical point of view this interpretation can lead to further development
along two possible directions:

1. Construction of novel unconditionally stable and robust preconditioners with coupling
stencils that go beyond the traditionally diffusive pattern.

2. Construction of preconditioners that are conditionally stable and robust for specific
problem classes, and that are easier to invert (solve) than the diffusion operator.
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